In [1]:
import tarfile
In [2]:
# 檔案名稱格式
filename_format="M06A_{year:04d}{month:02d}{day:02d}.tar.gz".format
xz_filename_format="xz/M06A_{year:04d}{month:02d}{day:02d}.tar.xz".format
csv_format = "M06A/{year:04d}{month:02d}{day:02d}/{hour:02d}/TDCS_M06A_{year:04d}{month:02d}{day:02d}_{hour:02d}0000.csv".format
In [3]:
# 打開剛才下載的檔案試試
data_config ={"year":2016, "month":12, "day":18}
tar = tarfile.open(filename_format(**data_config), 'r')
In [4]:
# 如果沒有下載,可以試試看 xz 檔案
#data_dconfig ={"year":2016, "month":11, "day":18}
#tar = tarfile.open(xz_filename_format(**data_config), 'r')
In [5]:
# 列出內容
tar.list()
?rwxrwxrwx nobody/nobody 0 2016-12-19 06:31:22 M06A/20161218/
?rwxr-xr-x nobody/nobody 0 2016-12-19 06:31:22 M06A/20161218/19/
?rw-r--r-- nobody/nobody 43788302 2016-12-19 06:58:57 M06A/20161218/19/TDCS_M06A_20161218_190000.csv
?rwxr-xr-x nobody/nobody 0 2016-12-19 06:31:21 M06A/20161218/13/
?rw-r--r-- nobody/nobody 47797413 2016-12-19 06:58:52 M06A/20161218/13/TDCS_M06A_20161218_130000.csv
?rwxr-xr-x nobody/nobody 0 2016-12-19 06:31:22 M06A/20161218/21/
?rw-r--r-- nobody/nobody 34892056 2016-12-19 06:58:58 M06A/20161218/21/TDCS_M06A_20161218_210000.csv
?rwxr-xr-x nobody/nobody 0 2016-12-19 06:31:17 M06A/20161218/00/
?rw-r--r-- nobody/nobody 10242555 2016-12-19 06:58:46 M06A/20161218/00/TDCS_M06A_20161218_000000.csv
?rwxr-xr-x nobody/nobody 0 2016-12-19 06:31:20 M06A/20161218/07/
?rw-r--r-- nobody/nobody 29010414 2016-12-19 06:58:48 M06A/20161218/07/TDCS_M06A_20161218_070000.csv
?rwxr-xr-x nobody/nobody 0 2016-12-19 06:31:21 M06A/20161218/14/
?rw-r--r-- nobody/nobody 56223075 2016-12-19 06:58:53 M06A/20161218/14/TDCS_M06A_20161218_140000.csv
?rwxr-xr-x nobody/nobody 0 2016-12-19 06:31:20 M06A/20161218/10/
?rw-r--r-- nobody/nobody 48228393 2016-12-19 06:58:50 M06A/20161218/10/TDCS_M06A_20161218_100000.csv
?rwxr-xr-x nobody/nobody 0 2016-12-19 06:31:22 M06A/20161218/22/
?rw-r--r-- nobody/nobody 23328529 2016-12-19 06:58:59 M06A/20161218/22/TDCS_M06A_20161218_220000.csv
?rwxr-xr-x nobody/nobody 0 2016-12-19 06:31:20 M06A/20161218/09/
?rw-r--r-- nobody/nobody 44472646 2016-12-19 06:58:49 M06A/20161218/09/TDCS_M06A_20161218_090000.csv
?rwxr-xr-x nobody/nobody 0 2016-12-19 06:31:20 M06A/20161218/03/
?rw-r--r-- nobody/nobody 4482391 2016-12-19 06:58:47 M06A/20161218/03/TDCS_M06A_20161218_030000.csv
?rwxr-xr-x nobody/nobody 0 2016-12-19 06:31:20 M06A/20161218/04/
?rw-r--r-- nobody/nobody 6234003 2016-12-19 06:58:47 M06A/20161218/04/TDCS_M06A_20161218_040000.csv
?rwxr-xr-x nobody/nobody 0 2016-12-19 06:31:21 M06A/20161218/17/
?rw-r--r-- nobody/nobody 51941166 2016-12-19 06:58:55 M06A/20161218/17/TDCS_M06A_20161218_170000.csv
?rwxr-xr-x nobody/nobody 0 2016-12-19 06:31:21 M06A/20161218/15/
?rw-r--r-- nobody/nobody 59027318 2016-12-19 06:58:54 M06A/20161218/15/TDCS_M06A_20161218_150000.csv
?rwxr-xr-x nobody/nobody 0 2016-12-19 06:31:20 M06A/20161218/06/
?rw-r--r-- nobody/nobody 17867508 2016-12-19 06:58:47 M06A/20161218/06/TDCS_M06A_20161218_060000.csv
?rwxr-xr-x nobody/nobody 0 2016-12-19 06:31:18 M06A/20161218/01/
?rw-r--r-- nobody/nobody 6568696 2016-12-19 06:58:46 M06A/20161218/01/TDCS_M06A_20161218_010000.csv
?rwxr-xr-x nobody/nobody 0 2016-12-19 06:31:21 M06A/20161218/12/
?rw-r--r-- nobody/nobody 40639579 2016-12-19 06:58:51 M06A/20161218/12/TDCS_M06A_20161218_120000.csv
?rwxr-xr-x nobody/nobody 0 2016-12-19 06:31:21 M06A/20161218/18/
?rw-r--r-- nobody/nobody 44388617 2016-12-19 06:58:56 M06A/20161218/18/TDCS_M06A_20161218_180000.csv
?rwxr-xr-x nobody/nobody 0 2016-12-19 06:31:22 M06A/20161218/20/
?rw-r--r-- nobody/nobody 41976533 2016-12-19 06:58:57 M06A/20161218/20/TDCS_M06A_20161218_200000.csv
?rwxr-xr-x nobody/nobody 0 2016-12-19 06:31:21 M06A/20161218/16/
?rw-r--r-- nobody/nobody 56768259 2016-12-19 06:58:55 M06A/20161218/16/TDCS_M06A_20161218_160000.csv
?rwxr-xr-x nobody/nobody 0 2016-12-19 06:31:20 M06A/20161218/05/
?rw-r--r-- nobody/nobody 10337717 2016-12-19 06:58:47 M06A/20161218/05/TDCS_M06A_20161218_050000.csv
?rwxr-xr-x nobody/nobody 0 2016-12-19 06:31:19 M06A/20161218/02/
?rw-r--r-- nobody/nobody 4735396 2016-12-19 06:58:46 M06A/20161218/02/TDCS_M06A_20161218_020000.csv
?rwxr-xr-x nobody/nobody 0 2016-12-19 06:31:20 M06A/20161218/08/
?rw-r--r-- nobody/nobody 37158659 2016-12-19 06:58:48 M06A/20161218/08/TDCS_M06A_20161218_080000.csv
?rwxr-xr-x nobody/nobody 0 2016-12-19 06:31:20 M06A/20161218/11/
?rw-r--r-- nobody/nobody 44919062 2016-12-19 06:58:51 M06A/20161218/11/TDCS_M06A_20161218_110000.csv
?rwxr-xr-x nobody/nobody 0 2016-12-19 06:31:22 M06A/20161218/23/
?rw-r--r-- nobody/nobody 12896245 2016-12-19 06:58:59 M06A/20161218/23/TDCS_M06A_20161218_230000.csv
In [6]:
# 打開裡面 10 點鐘的資料
csv = tar.extractfile(csv_format(hour=10, **data_config))
# 類似檔案的物件
csv
Out[6]:
<ExFileObject name='M06A_20161218.tar.gz'>
In [7]:
# 印出前十行來看看
for i in range(10):
print(csv.readline().decode())
31,2016-12-18 10:00:50,01F1045N,2016-12-18 10:29:01,01F0584N,53.400,Y,2016-12-18 10:00:50+01F1045N; 2016-12-18 10:04:37+01F0979N; 2016-12-18 10:05:58+01F0956N; 2016-12-18 10:07:43+01F0928N; 2016-12-18 10:10:43+01F0880N; 2016-12-18 10:18:38+01F0750N; 2016-12-18 10:27:26+01H0608N; 2016-12-18 10:29:01+01F0584N
31,2016-12-18 10:34:24,01F3525S,2016-12-18 10:46:09,01F3686S,20.200,Y,2016-12-18 10:34:24+01F3525S; 2016-12-18 10:37:13+01F3561S; 2016-12-18 10:39:21+01F3590S; 2016-12-18 10:42:54+01F3640S; 2016-12-18 10:45:26+01F3676S; 2016-12-18 10:46:09+01F3686S
31,2016-12-18 10:57:33,03F3854N,2016-12-18 11:15:23,01F3686S,33.600,Y,2016-12-18 10:57:33+03F3854N; 2016-12-18 11:12:29+01F3640S; 2016-12-18 11:14:45+01F3676S; 2016-12-18 11:15:23+01F3686S
31,2016-12-18 10:05:11,03F0525S,2016-12-18 10:07:39,03F0559S,12.100,Y,2016-12-18 10:05:11+03F0525S; 2016-12-18 10:07:39+03F0559S
31,2016-12-18 10:35:46,01F3185S,2016-12-18 11:05:08,01F3686S,54.100,Y,2016-12-18 10:35:46+01F3185S; 2016-12-18 10:38:12+01F3227S; 2016-12-18 10:39:37+01F3252S; 2016-12-18 10:41:30+01F3286S; 2016-12-18 10:46:13+01F3366S; 2016-12-18 10:47:57+01F3398S; 2016-12-18 10:51:34+01F3460S; 2016-12-18 10:57:54+01F3561S; 2016-12-18 10:59:37+01F3590S; 2016-12-18 11:04:35+01F3676S; 2016-12-18 11:05:08+01F3686S
31,2016-12-18 10:00:35,03F3496N,2016-12-18 10:03:32,03F3445N,16.800,Y,2016-12-18 10:00:35+03F3496N; 2016-12-18 10:03:32+03F3445N
32,2016-12-18 10:00:21,05F0287N,2016-12-18 12:40:50,03F0021N,46.600,Y,2016-12-18 10:00:21+05F0287N; 2016-12-18 12:27:33+05F0055N; 2016-12-18 12:31:28+05F0001N; 2016-12-18 12:32:17+03F0150N; 2016-12-18 12:32:53+03F0140N; 2016-12-18 12:34:24+03F0116N; 2016-12-18 12:38:33+03F0054N; 2016-12-18 12:40:50+03F0021N
31,2016-12-18 10:50:12,01H0271N,2016-12-18 10:55:02,01H0200N,13.300,Y,2016-12-18 10:50:12+01H0271N; 2016-12-18 10:54:30+01H0208N; 2016-12-18 10:55:02+01H0200N
31,2016-12-18 10:09:36,01F0339S,2016-12-18 10:16:15,01H0447S,19.400,Y,2016-12-18 10:09:36+01F0339S; 2016-12-18 10:16:15+01H0447S
32,2016-12-18 10:36:58,01F3696N,2016-12-18 10:43:35,01F3640N,8.000,Y,2016-12-18 10:36:58+01F3696N; 2016-12-18 10:38:24+01F3676N; 2016-12-18 10:43:35+01F3640N
In [8]:
import pandas
csv 欄位依照手冊設定
國道高速公路電子收費交通資料蒐集支援系統(Traffic Data Collection System,TDCS)使用手冊
In [9]:
# 設定欄位名稱
M06A_fields = ['VehicleType',
'DetectionTime_O','GantryID_O',
'DetectionTime_D','GantryID_D ',
'TripLength', 'TripEnd', 'TripInformation']
# 打開裡面 10 點鐘的資料
csv = tar.extractfile(csv_format(hour=10, **data_config))
# 讀進資料
data = pandas.read_csv(csv, names=M06A_fields)
In [10]:
data
Out[10]:
VehicleType
DetectionTime_O
GantryID_O
DetectionTime_D
GantryID_D
TripLength
TripEnd
TripInformation
0
31
2016-12-18 10:00:50
01F1045N
2016-12-18 10:29:01
01F0584N
53.400
Y
2016-12-18 10:00:50+01F1045N; 2016-12-18 10:04...
1
31
2016-12-18 10:34:24
01F3525S
2016-12-18 10:46:09
01F3686S
20.200
Y
2016-12-18 10:34:24+01F3525S; 2016-12-18 10:37...
2
31
2016-12-18 10:57:33
03F3854N
2016-12-18 11:15:23
01F3686S
33.600
Y
2016-12-18 10:57:33+03F3854N; 2016-12-18 11:12...
3
31
2016-12-18 10:05:11
03F0525S
2016-12-18 10:07:39
03F0559S
12.100
Y
2016-12-18 10:05:11+03F0525S; 2016-12-18 10:07...
4
31
2016-12-18 10:35:46
01F3185S
2016-12-18 11:05:08
01F3686S
54.100
Y
2016-12-18 10:35:46+01F3185S; 2016-12-18 10:38...
5
31
2016-12-18 10:00:35
03F3496N
2016-12-18 10:03:32
03F3445N
16.800
Y
2016-12-18 10:00:35+03F3496N; 2016-12-18 10:03...
6
32
2016-12-18 10:00:21
05F0287N
2016-12-18 12:40:50
03F0021N
46.600
Y
2016-12-18 10:00:21+05F0287N; 2016-12-18 12:27...
7
31
2016-12-18 10:50:12
01H0271N
2016-12-18 10:55:02
01H0200N
13.300
Y
2016-12-18 10:50:12+01H0271N; 2016-12-18 10:54...
8
31
2016-12-18 10:09:36
01F0339S
2016-12-18 10:16:15
01H0447S
19.400
Y
2016-12-18 10:09:36+01F0339S; 2016-12-18 10:16...
9
32
2016-12-18 10:36:58
01F3696N
2016-12-18 10:43:35
01F3640N
8.000
Y
2016-12-18 10:36:58+01F3696N; 2016-12-18 10:38...
10
31
2016-12-18 10:59:07
03F2985N
2016-12-18 10:59:07
03F2985N
3.000
Y
2016-12-18 10:59:07+03F2985N
11
32
2016-12-18 10:18:38
01F3640N
2016-12-18 10:44:03
01F3525N
18.000
Y
2016-12-18 10:18:38+01F3640N; 2016-12-18 10:21...
12
31
2016-12-18 10:19:12
01F3460N
2016-12-18 10:19:12
01F3460N
7.100
Y
2016-12-18 10:19:12+01F3460N
13
31
2016-12-18 10:07:39
03F2261S
2016-12-18 11:20:08
01F3019S
118.805
Y
2016-12-18 10:07:39+03F2261S; 2016-12-18 10:10...
14
31
2016-12-18 10:25:34
01F0099S
2016-12-18 10:38:24
01H0305S
26.220
Y
2016-12-18 10:25:34+01F0099S; 2016-12-18 10:29...
15
31
2016-12-18 10:26:33
01F0750S
2016-12-18 11:01:52
01F1292S
62.300
Y
2016-12-18 10:26:33+01F0750S; 2016-12-18 10:34...
16
32
2016-12-18 10:32:41
01F0099N
2016-12-18 10:32:41
01F0099N
3.700
Y
2016-12-18 10:32:41+01F0099N
17
31
2016-12-18 10:32:55
05F0438N
2016-12-18 10:49:58
05F0287N
32.000
Y
2016-12-18 10:32:55+05F0438N; 2016-12-18 10:41...
18
31
2016-12-18 10:57:03
03F2125N
2016-12-18 12:55:52
01F0293N
182.900
Y
2016-12-18 10:57:03+03F2125N; 2016-12-18 10:58...
19
31
2016-12-18 10:15:57
01F2089N
2016-12-18 10:27:00
01F1906N
21.600
Y
2016-12-18 10:15:57+01F2089N; 2016-12-18 10:20...
20
31
2016-12-18 10:52:17
03F1992N
2016-12-18 10:59:48
01F2011S
20.200
Y
2016-12-18 10:52:17+03F1992N; 2016-12-18 10:56...
21
31
2016-12-18 10:47:22
05F0438N
2016-12-18 11:35:25
05F0055N
42.700
Y
2016-12-18 10:47:22+05F0438N; 2016-12-18 10:55...
22
42
2016-12-18 10:44:36
01F2322S
2016-12-18 11:50:23
01F2714S
52.800
Y
2016-12-18 10:44:36+01F2322S; 2016-12-18 10:49...
23
31
2016-12-18 10:54:52
01F0413N
2016-12-18 11:07:08
01F0233N
18.300
Y
2016-12-18 10:54:52+01F0413N; 2016-12-18 10:57...
24
31
2016-12-18 10:03:25
01F3590S
2016-12-18 10:08:36
01F3686S
13.400
Y
2016-12-18 10:03:25+01F3590S; 2016-12-18 10:06...
25
31
2016-12-18 10:00:23
01F3696N
2016-12-18 10:00:23
01F3696N
3.000
Y
2016-12-18 10:00:23+01F3696N
26
31
2016-12-18 10:32:18
01F1292N
2016-12-18 11:31:45
01F0293N
105.700
Y
2016-12-18 10:32:18+01F1292N; 2016-12-18 10:41...
27
32
2016-12-18 10:32:47
01F3185N
2016-12-18 10:32:47
01F3185N
4.100
Y
2016-12-18 10:32:47+01F3185N
28
31
2016-12-18 10:59:35
03F4021N
2016-12-18 11:05:05
03F3916N
15.700
Y
2016-12-18 10:59:35+03F4021N; 2016-12-18 11:05...
29
31
2016-12-18 10:17:37
03F4259N
2016-12-18 10:42:59
01F3696N
39.450
Y
2016-12-18 10:17:37+03F4259N; 2016-12-18 10:19...
...
...
...
...
...
...
...
...
...
211217
31
2016-12-18 10:02:20
01F0633S
2016-12-18 10:04:57
01F0681S
6.800
Y
2016-12-18 10:02:20+01F0633S; 2016-12-18 10:04...
211218
31
2016-12-18 10:31:03
03F3392S
2016-12-18 10:31:03
03F3392S
5.300
Y
2016-12-18 10:31:03+03F3392S
211219
31
2016-12-18 10:23:12
01F2011N
2016-12-18 10:35:42
01F1802N
29.100
Y
2016-12-18 10:23:12+01F2011N; 2016-12-18 10:26...
211220
31
2016-12-18 10:31:45
01F2483N
2016-12-18 10:31:45
01F2483N
6.500
Y
2016-12-18 10:31:45+01F2483N
211221
31
2016-12-18 10:59:49
01F3590N
2016-12-18 11:44:26
01F3019N
62.830
Y
2016-12-18 10:59:49+01F3590N; 2016-12-18 11:01...
211222
31
2016-12-18 10:08:06
01F0155N
2016-12-18 10:14:58
01F0061N
11.800
Y
2016-12-18 10:08:06+01F0155N; 2016-12-18 10:08...
211223
31
2016-12-18 10:27:46
01F1664S
2016-12-18 10:32:03
01F1725S
8.700
Y
2016-12-18 10:27:46+01F1664S; 2016-12-18 10:32...
211224
32
2016-12-18 10:34:22
01F2322N
2016-12-18 11:07:19
03F1860N
57.200
Y
2016-12-18 10:34:22+01F2322N; 2016-12-18 10:39...
211225
31
2016-12-18 10:44:07
01F1839S
2016-12-18 11:10:42
01F2249S
54.600
Y
2016-12-18 10:44:07+01F1839S; 2016-12-18 10:48...
211226
31
2016-12-18 10:34:31
01F1774N
2016-12-18 12:37:58
01F0213N
161.800
Y
2016-12-18 10:34:31+01F1774N; 2016-12-18 10:39...
211227
31
2016-12-18 10:13:50
03F0447S
2016-12-18 10:21:26
03F0559S
19.700
Y
2016-12-18 10:13:50+03F0447S; 2016-12-18 10:19...
211228
31
2016-12-18 10:15:02
03F0338N
2016-12-18 10:32:39
05F0055S
34.300
Y
2016-12-18 10:15:02+03F0338N; 2016-12-18 10:17...
211229
31
2016-12-18 10:03:44
03F2194N
2016-12-18 10:07:36
03F2125N
11.200
Y
2016-12-18 10:03:44+03F2194N; 2016-12-18 10:07...
211230
31
2016-12-18 10:50:27
01F0509N
2016-12-18 11:07:20
01F0256N
27.400
Y
2016-12-18 10:50:27+01F0509N; 2016-12-18 10:53...
211231
31
2016-12-18 10:40:34
01F0155S
2016-12-18 10:46:52
01F0248S
9.900
Y
2016-12-18 10:40:34+01F0155S; 2016-12-18 10:42...
211232
31
2016-12-18 10:42:09
01F3286N
2016-12-18 11:20:08
01F2827N
57.800
Y
2016-12-18 10:42:09+01F3286N; 2016-12-18 10:44...
211233
31
2016-12-18 10:04:45
01F2011S
2016-12-18 10:45:49
01F2674S
72.000
Y
2016-12-18 10:04:45+01F2011S; 2016-12-18 10:09...
211234
31
2016-12-18 10:54:48
03F0087S
2016-12-18 11:10:55
03F0337S
33.500
Y
2016-12-18 10:54:48+03F0087S; 2016-12-18 10:56...
211235
31
2016-12-18 10:07:06
01F0376N
2016-12-18 10:15:07
01F0256N
16.400
Y
2016-12-18 10:07:06+01F0376N; 2016-12-18 10:09...
211236
31
2016-12-18 10:28:48
01F3083S
2016-12-18 10:59:01
01F3590S
58.700
Y
2016-12-18 10:28:48+01F3083S; 2016-12-18 10:31...
211237
41
2016-12-18 10:11:58
03F0337S
2016-12-18 10:19:36
03F0447S
19.500
Y
2016-12-18 10:11:58+03F0337S; 2016-12-18 10:15...
211238
31
2016-12-18 10:57:09
01F0061N
2016-12-18 10:57:09
01F0061N
1.800
Y
2016-12-18 10:57:09+01F0061N
211239
31
2016-12-18 10:19:51
03F1651S
2016-12-18 10:52:50
03F2129S
49.800
Y
2016-12-18 10:19:51+03F1651S; 2016-12-18 10:23...
211240
31
2016-12-18 10:58:58
01F3366S
2016-12-18 11:17:58
01F3686S
38.900
Y
2016-12-18 10:58:58+01F3366S; 2016-12-18 11:00...
211241
31
2016-12-18 10:16:37
01F2156N
2016-12-18 10:25:06
01F2011N
21.700
Y
2016-12-18 10:16:37+01F2156N; 2016-12-18 10:20...
211242
31
2016-12-18 10:49:57
03F0648N
2016-12-18 10:49:57
03F0648N
5.600
Y
2016-12-18 10:49:57+03F0648N
211243
31
2016-12-18 10:31:51
01F0376N
2016-12-18 10:40:41
01F0256N
16.400
Y
2016-12-18 10:31:51+01F0376N; 2016-12-18 10:34...
211244
31
2016-12-18 10:31:30
03F0846N
2016-12-18 10:31:30
03F0846N
11.000
Y
2016-12-18 10:31:30+03F0846N
211245
31
2016-12-18 10:38:09
03F3854S
2016-12-18 10:38:09
03F3854S
8.600
Y
2016-12-18 10:38:09+03F3854S
211246
31
2016-12-18 10:44:36
01F0633S
2016-12-18 10:44:36
01F0633S
2.600
Y
2016-12-18 10:44:36+01F0633S
211247 rows × 8 columns
In [11]:
# 先檢查一下有沒有異常的資料
data[data.TripEnd == 'N'].shape
Out[11]:
(0, 8)
In [12]:
# 先去除異常資料
data = data[data.TripEnd == 'Y']
In [13]:
# 然後乾脆刪掉 TripEnd 這欄
del data['TripEnd']
# 也可以用 data.drop('TripEnd', axis=1, inplace=True)
In [14]:
# 前 5 筆
# 或 data.iloc[:5]
data.head(5)
Out[14]:
VehicleType
DetectionTime_O
GantryID_O
DetectionTime_D
GantryID_D
TripLength
TripInformation
0
31
2016-12-18 10:00:50
01F1045N
2016-12-18 10:29:01
01F0584N
53.4
2016-12-18 10:00:50+01F1045N; 2016-12-18 10:04...
1
31
2016-12-18 10:34:24
01F3525S
2016-12-18 10:46:09
01F3686S
20.2
2016-12-18 10:34:24+01F3525S; 2016-12-18 10:37...
2
31
2016-12-18 10:57:33
03F3854N
2016-12-18 11:15:23
01F3686S
33.6
2016-12-18 10:57:33+03F3854N; 2016-12-18 11:12...
3
31
2016-12-18 10:05:11
03F0525S
2016-12-18 10:07:39
03F0559S
12.1
2016-12-18 10:05:11+03F0525S; 2016-12-18 10:07...
4
31
2016-12-18 10:35:46
01F3185S
2016-12-18 11:05:08
01F3686S
54.1
2016-12-18 10:35:46+01F3185S; 2016-12-18 10:38...
In [15]:
# 第 12 筆
data.iloc[11]
Out[15]:
VehicleType 32
DetectionTime_O 2016-12-18 10:18:38
GantryID_O 01F3640N
DetectionTime_D 2016-12-18 10:44:03
GantryID_D 01F3525N
TripLength 18
TripInformation 2016-12-18 10:18:38+01F3640N; 2016-12-18 10:21...
Name: 11, dtype: object
In [20]:
# 對我們來說,其實重要的只有 TripInformation 和 VehicleType
# 先只注意這兩項
data = data[['VehicleType', "TripInformation"]]
data.head(5)
Out[20]:
VehicleType
TripInformation
0
31
2016-12-18 10:00:50+01F1045N; 2016-12-18 10:04...
1
31
2016-12-18 10:34:24+01F3525S; 2016-12-18 10:37...
2
31
2016-12-18 10:57:33+03F3854N; 2016-12-18 11:12...
3
31
2016-12-18 10:05:11+03F0525S; 2016-12-18 10:07...
4
31
2016-12-18 10:35:46+01F3185S; 2016-12-18 10:38...
In [23]:
# 查看看小貨車資料
data.query('VehicleType==32')
Out[23]:
VehicleType
TripInformation
6
32
2016-12-18 10:00:21+05F0287N; 2016-12-18 12:27...
9
32
2016-12-18 10:36:58+01F3696N; 2016-12-18 10:38...
11
32
2016-12-18 10:18:38+01F3640N; 2016-12-18 10:21...
16
32
2016-12-18 10:32:41+01F0099N
27
32
2016-12-18 10:32:47+01F3185N
35
32
2016-12-18 10:47:00+01F3286N
41
32
2016-12-18 10:33:12+03F0337S; 2016-12-18 10:37...
51
32
2016-12-18 10:19:00+03A0041N
73
32
2016-12-18 10:08:37+05F0528N; 2016-12-18 10:15...
82
32
2016-12-18 10:21:55+01F0467N
102
32
2016-12-18 10:18:46+03F2194N; 2016-12-18 10:21...
113
32
2016-12-18 10:45:24+03A0015S; 2016-12-18 10:47...
132
32
2016-12-18 10:57:22+01F0061S; 2016-12-18 10:59...
135
32
2016-12-18 10:30:40+03F1215S; 2016-12-18 10:32...
138
32
2016-12-18 10:27:27+03A0015S
139
32
2016-12-18 10:41:46+01F0532N; 2016-12-18 10:45...
142
32
2016-12-18 10:10:06+01F2930S; 2016-12-18 10:15...
148
32
2016-12-18 10:31:12+03F0525S
151
32
2016-12-18 10:37:33+01F3696N; 2016-12-18 10:38...
153
32
2016-12-18 10:44:38+01F0339S; 2016-12-18 10:51...
178
32
2016-12-18 10:56:22+03F0116N; 2016-12-18 10:59...
189
32
2016-12-18 10:54:31+03F1633N; 2016-12-18 11:03...
191
32
2016-12-18 10:20:16+01F0681N; 2016-12-18 10:21...
192
32
2016-12-18 10:54:01+03F0006S; 2016-12-18 10:59...
198
32
2016-12-18 10:03:22+01F0681N; 2016-12-18 10:04...
217
32
2016-12-18 10:07:19+01F2866N; 2016-12-18 10:09...
240
32
2016-12-18 10:06:14+01F3686S
252
32
2016-12-18 10:58:26+01F0681N; 2016-12-18 10:59...
260
32
2016-12-18 10:56:35+01F2425S; 2016-12-18 11:00...
266
32
2016-12-18 10:27:24+03F0394S; 2016-12-18 10:31...
...
...
...
211001
32
2016-12-18 10:46:54+01F1774N; 2016-12-18 10:51...
211010
32
2016-12-18 10:30:57+03F2129S
211013
32
2016-12-18 10:59:17+01H0579N; 2016-12-18 11:06...
211016
32
2016-12-18 10:44:40+03F4232N; 2016-12-18 10:48...
211020
32
2016-12-18 10:58:05+01F1664S; 2016-12-18 11:01...
211043
32
2016-12-18 10:09:03+03F3854S; 2016-12-18 10:12...
211045
32
2016-12-18 10:48:59+01F3676S; 2016-12-18 10:49...
211048
32
2016-12-18 10:58:02+03F2231N; 2016-12-18 11:00...
211051
32
2016-12-18 10:49:30+03F3854N; 2016-12-18 10:55...
211052
32
2016-12-18 10:32:05+01F2249N; 2016-12-18 10:36...
211056
32
2016-12-18 10:44:46+01F0467N
211063
32
2016-12-18 10:07:49+01H0206S; 2016-12-18 10:13...
211087
32
2016-12-18 10:32:47+03F0525S
211094
32
2016-12-18 10:38:25+03F0559S
211102
32
2016-12-18 10:13:04+01F0557N; 2016-12-18 10:14...
211111
32
2016-12-18 10:58:47+01F0633S; 2016-12-18 11:00...
211122
32
2016-12-18 10:17:19+01F3696N; 2016-12-18 10:18...
211132
32
2016-12-18 10:09:31+05F0287N; 2016-12-18 10:35...
211146
32
2016-12-18 10:05:20+01F0233N; 2016-12-18 10:06...
211147
32
2016-12-18 10:27:44+01F3366S
211150
32
2016-12-18 10:29:16+03F2614N; 2016-12-18 10:33...
211176
32
2016-12-18 10:57:04+01F3696N; 2016-12-18 10:58...
211177
32
2016-12-18 10:13:31+01F0376N; 2016-12-18 10:15...
211178
32
2016-12-18 10:14:28+03F0116N; 2016-12-18 10:18...
211189
32
2016-12-18 10:02:20+03F1944S; 2016-12-18 10:04...
211195
32
2016-12-18 10:02:16+03F0158S; 2016-12-18 10:05...
211201
32
2016-12-18 10:06:08+01F0339S
211202
32
2016-12-18 10:33:47+03F3588N
211215
32
2016-12-18 10:12:06+01F3460S; 2016-12-18 10:16...
211224
32
2016-12-18 10:34:22+01F2322N; 2016-12-18 10:39...
33815 rows × 2 columns
In [25]:
# 或者查看看小客車資料
data[data.VehicleType==31]
Out[25]:
VehicleType
TripInformation
0
31
2016-12-18 10:00:50+01F1045N; 2016-12-18 10:04...
1
31
2016-12-18 10:34:24+01F3525S; 2016-12-18 10:37...
2
31
2016-12-18 10:57:33+03F3854N; 2016-12-18 11:12...
3
31
2016-12-18 10:05:11+03F0525S; 2016-12-18 10:07...
4
31
2016-12-18 10:35:46+01F3185S; 2016-12-18 10:38...
5
31
2016-12-18 10:00:35+03F3496N; 2016-12-18 10:03...
7
31
2016-12-18 10:50:12+01H0271N; 2016-12-18 10:54...
8
31
2016-12-18 10:09:36+01F0339S; 2016-12-18 10:16...
10
31
2016-12-18 10:59:07+03F2985N
12
31
2016-12-18 10:19:12+01F3460N
13
31
2016-12-18 10:07:39+03F2261S; 2016-12-18 10:10...
14
31
2016-12-18 10:25:34+01F0099S; 2016-12-18 10:29...
15
31
2016-12-18 10:26:33+01F0750S; 2016-12-18 10:34...
17
31
2016-12-18 10:32:55+05F0438N; 2016-12-18 10:41...
18
31
2016-12-18 10:57:03+03F2125N; 2016-12-18 10:58...
19
31
2016-12-18 10:15:57+01F2089N; 2016-12-18 10:20...
20
31
2016-12-18 10:52:17+03F1992N; 2016-12-18 10:56...
21
31
2016-12-18 10:47:22+05F0438N; 2016-12-18 10:55...
23
31
2016-12-18 10:54:52+01F0413N; 2016-12-18 10:57...
24
31
2016-12-18 10:03:25+01F3590S; 2016-12-18 10:06...
25
31
2016-12-18 10:00:23+01F3696N
26
31
2016-12-18 10:32:18+01F1292N; 2016-12-18 10:41...
28
31
2016-12-18 10:59:35+03F4021N; 2016-12-18 11:05...
29
31
2016-12-18 10:17:37+03F4259N; 2016-12-18 10:19...
30
31
2016-12-18 10:08:44+01F0248S; 2016-12-18 10:09...
31
31
2016-12-18 10:01:20+01H0206S; 2016-12-18 10:07...
32
31
2016-12-18 10:16:13+01H0271N
33
31
2016-12-18 10:56:15+01H0305S; 2016-12-18 10:58...
34
31
2016-12-18 10:35:09+03F1332S; 2016-12-18 10:38...
36
31
2016-12-18 10:22:44+01H0305S; 2016-12-18 10:25...
...
...
...
211214
31
2016-12-18 10:30:44+01F3019N; 2016-12-18 10:36...
211216
31
2016-12-18 10:57:20+03F0447S; 2016-12-18 11:03...
211217
31
2016-12-18 10:02:20+01F0633S; 2016-12-18 10:04...
211218
31
2016-12-18 10:31:03+03F3392S
211219
31
2016-12-18 10:23:12+01F2011N; 2016-12-18 10:26...
211220
31
2016-12-18 10:31:45+01F2483N
211221
31
2016-12-18 10:59:49+01F3590N; 2016-12-18 11:01...
211222
31
2016-12-18 10:08:06+01F0155N; 2016-12-18 10:08...
211223
31
2016-12-18 10:27:46+01F1664S; 2016-12-18 10:32...
211225
31
2016-12-18 10:44:07+01F1839S; 2016-12-18 10:48...
211226
31
2016-12-18 10:34:31+01F1774N; 2016-12-18 10:39...
211227
31
2016-12-18 10:13:50+03F0447S; 2016-12-18 10:19...
211228
31
2016-12-18 10:15:02+03F0338N; 2016-12-18 10:17...
211229
31
2016-12-18 10:03:44+03F2194N; 2016-12-18 10:07...
211230
31
2016-12-18 10:50:27+01F0509N; 2016-12-18 10:53...
211231
31
2016-12-18 10:40:34+01F0155S; 2016-12-18 10:42...
211232
31
2016-12-18 10:42:09+01F3286N; 2016-12-18 10:44...
211233
31
2016-12-18 10:04:45+01F2011S; 2016-12-18 10:09...
211234
31
2016-12-18 10:54:48+03F0087S; 2016-12-18 10:56...
211235
31
2016-12-18 10:07:06+01F0376N; 2016-12-18 10:09...
211236
31
2016-12-18 10:28:48+01F3083S; 2016-12-18 10:31...
211238
31
2016-12-18 10:57:09+01F0061N
211239
31
2016-12-18 10:19:51+03F1651S; 2016-12-18 10:23...
211240
31
2016-12-18 10:58:58+01F3366S; 2016-12-18 11:00...
211241
31
2016-12-18 10:16:37+01F2156N; 2016-12-18 10:20...
211242
31
2016-12-18 10:49:57+03F0648N
211243
31
2016-12-18 10:31:51+01F0376N; 2016-12-18 10:34...
211244
31
2016-12-18 10:31:30+03F0846N
211245
31
2016-12-18 10:38:09+03F3854S
211246
31
2016-12-18 10:44:36+01F0633S
168197 rows × 2 columns
Content source: tjwei/HackNTU_Data_2017
Similar notebooks: